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Specified polymer topologies interacting with a surface 

Dongming Zhao and Turah Lookman 
Department o f  Applied Mathematics, University o f  Western Ontario, London, N6A 5B9, 
Canada 

Received 11 May 1990, in final form 1 February 1991 

Abstract. We study the adsorption properties of a polymer network with a specified 
topology. We prove that a specified topology interacting with a surface has the same 
reduced free energy as a self-avoiding walk interacting with a surface. 

1. Introduction 

Self-avoiding walks (SAWS), k-stars and k-loops are examples of topologies, the 
configurational properties of which have been studied in restricted geometry. The 
adsorption transition of SAWS, which occurs when the vertices or edges in the walk 
have a sufficiently large attractive interaction with a surface, has been studied exten- 
sively using both rigorous and numerical approaches (Hammersley et a/ 1982, Guim 
and Burkhardt 1989, Zhao et a/  1990, etc.). We have recently proved that k-loops, 
which consist of k SAWS with all initial (terminal) vertices connected together, have 
the same adsorption properties (reduced free energy) as a SAW (Zhao and Lookman 
1990). The influence of topology on the critical properties of polymers in bulk has 
been studied by Gaunt et a /  (1984) and Duplantier (1986). For a general polymer 
network to a surface, Duplantier and Saleur (1986) have conjectured the dependence 
of the critical exponent y on polymer topology. In this paper, we examine the problem 
of a general polymer network, with a specific topology, interacting with an adsorption 
surface. We prove that such a polymer network has the same reduced free energy as 
that for a SAW interacting with an adsorption surface. 

We consider a uniform polymer network g,(c, n,, . . . , n 2 d )  which is defined on a 
d-dimensional hypercubic lattice and interacts with a ( d  - 1)-dimensional hypersurface 
(either penetrable or impenetrable). The topology of such a network is specified in 
terms of c cycles, n ,  vertices of degree 3 , .  . . , n2d vertices of degree 2d. These vertices 
will also be referred to as  branch points. Using Euler's law of edges, we have 

2d 

2 c = 2 - n , +  (i-2)nj (1.1) 
; = 3  

and 
2'l 

2n" = n, + 1 ini (i .2) 

where n ,  is the number of vertices with degree 1 and K is the number of chains 
connecting the branch points and vertices of degree 1. Each of the K chains consists 
of n monomers and is an n-step SAW. The vertices of degree 2 have been suppressed 
since they d o  not affect the topology and hence the structure of the branched polymer, 
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The values {c, n , ,  n,, . . . , f l 2 d l  do not specify a unique topology since they do not 
uniquely determine the connectivity. More than one topology can have the same set 
of values for {c, n 3 ,  n 4 , .  . . , n 2 d I  (figure 1). The case c = O  refers to a tree-like structure 
in general. However, for certain values of {c ,  n, ,  n4,. . . , n 2 d }  unique topologies are 
obtained. For example, nk =1, nj = O  for k #  i refers to a k-star, n , = 2 ,  ni =0, ; a 4  
refers an H-comb (figure 2). For c=O, each chain in such a network has a different 
initial and terminal vertex and each chain can have an even or odd number of monomers. 
The case c # 0 includes those with loops in which the initial and terminal vertices of 
a chain are the same (figure l (b)) .  Chains forming loops or polygons are restricted to 
having an even number of monomers for a non-zero embedding in the hypercubic 
lattice. Hence, for a uniform topology with c # 0, we restrict all chains to having an 
even number of monomers. 

For the lattice, a vertex is a point in the d-dimensional Euclidean space with integer 
coordinates x = ( x I , .  . . , x d ) .  An n-step SAW o is a sequence of vertices U = 
{x(O),x(l), ..., x ( n ) }  with ~ x ( i ) - x ( i + l ) ~ = l .  We define the unit vectors by e , =  
(1,0,. . . , 01, . . . , ed = (0, 0, . . . , 1). The interaction surface is the hyperplane x, = 0. In 
the surface, each vertex is the intersection of d - 1 perpendicular planes which divide 
the hypercubic lattice into 2d-' regions, to be referred to as subsections. 

Let L ( c ,  n , . .  . . , n Z d )  be the set of connected polymer networks with topology 
defined by {c ,  n,, n 4 , .  . . , n l d } .  The topology contains K n  edges since each of the K 
chains is an n-step SAW. We denote by g,,,, the number of sich networks with a total 

I bl 

Figure 1. Examples of topologies with the same (c, n,. n4,. . . , ?I**]: ( a )  a D graph and a 
dumb-bell with ( 2 , 2 , 0 , 0 , .  . . ,O]; ( b )  a tree and a comb with (0,4,0,0,. . . ,Ol. 

Id i bl 

Figure 2. Unique topologies for certain values of (c. n,, n l . .  . . , n ~ } ;  ( a )  a 4-star with 
(0,0,1,0,. . . ,a}; ( b )  an H-comb with ( 0 . 2 , 0 , .  . . ,O}. 
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of m edges in the penetrable surface x, = 0 and define the generating function by 
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K" 

G J c ,  n 3 , .  ... n 2 d ,  w )  = 1 g,,, emu. (1.3) 
m=" 

We show that 

lim (Kn)-'log G,(c, n , , .  . . .  n Z d ,  w ) = A ( w )  (1.4) 

where A(w)  is the reduced free energy of SAWS in terms of the number of edges in the 
penetrable surface. For c = 0, n can be either even or odd, for c # 0, n is even. 

"-m 

2. Proof of the results 

We derive a lower bound for the function G,(c,  n,, , . . , n2,,. 0 ) .  By following the 
procedure of Gaunt et al(1984), such a lower bound can be obtained by using simple 
polymer topologies (components) to construct a polymer network with the set 
(c ,  n,, . . , , n 2 d ) .  In the following, we consider the case c # 0. 

We have previously defined (Zhao and Lookman 1990): (i) the set of n-step SAWS, 

Sn, which are totally confined in the wedge w :  1 s x2, .  ... 1 S xd-,  s xd with x(0) = 
e,+e,+. . .+ed-,+4ed and x ( n )  in the hyperplane x,, =x,_, (figure 3); (i i)  two fixed 
(d+4)-step walks L, and L, starting at 0 and ending at x(O), where L ,  has no edges 
in the surface x,=O and L, is totally embedded in the surface (figure 4); (iii) two 
injective maps Xi ( i ,  j P 2 )  and g, ( i p  1) such that A,; interchanges the coordinates 
x,, x; of a vertex x and gj replaces xi of x with -x.. We have shown that 

lim ( n ) - l  log Be( 0 )  = A( w ) (2.1) 
"+m 

where B, (w)  is the generating function for 9&. Classification of walks in 9- by the 
coordinates of the end vertices yields, at most, I = ( n  + I)d-'(2n + 1) subclasses. In the 

: ,e. . ,  , :,I . : .  
, ._ 
, ,. .................... ....... ............................ ........ , ,. ~ ~ ~ 

. ,  , ,  , ,  , .  , .  . .  
12- ~ , .  . .  
1. 

........ ., ......... 

I !  : .  
. .  , .  . .  , .  

,,, ~ i 
- : :  . .  

0 1 2  3 4  5 6 7 8 9 1 0 1 1 1 2  

4 
Flgure 3. Example of a defined SAW in L., (heavy full line). Broken lines represent the 
hyperplane x ~ . ~  = x d  and x * - ~ =  1. 
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Figure d. Heavy full lines represent the two defined ( d  +4)-step walks L,, L, 

ith s&&ss BL, the end v&er of a!! walks is denoted by x ( n )  = ( x , ( n ) ,  . . . x d ( n ) ) .  
By using the walks in 93;, the maps A,;, gi and L,,  L2. we have previously given the 
construction of two components. These are: 

(a )  By taking two yalks from 3; and concatenating with the same Li, we can 
construct ( 2 (  n + d +4)+ I ) - s tep  walks U' or U*,  where J = 3 or J = 4. Since we only 
deal with a polymer network with an even number of edges in each chain, we will let 
J = 4: <U' and <02 are totally confined in the subsection s!: x2 O! . . . xd-!  3 Oz x.! 3 0 
and intersect only at their initial and terminal vertices x(S) and x ( E ) ,  which satisfy 
x(S)=O and x ( E ) = ( O ,  . . . ,  0,2xd(n)+4).(figure 5). The incident edges at the two 
vertices for W '  are [O,e,] (or [O ,ed ] )  and [ x ( E ) , x ( E ) + e , l  (or [ x ( E ) , x ( E ) - e , I )  
respectively, while the incident edges at the two vertices for U' are ,[O, ed-l] and 
[ x ( E ) ,  x ( E ) + e d _ , ]  respectively. We will denote these walks by d e , ) ,  d e & , )  and 
&(e,). For any two vertices x ( k ! ) ,  d k , )  in the same walk d e i ) ,  we have 

Ixj( k,) - x;( k d  xd ( n )  + 1 f o r j Z d  (2.2) 

(2.3) 

( b )  The 'watermelon' topology consists of chains attached by their extremities such 
th.! !he roor&nzte of vprkx 0'1 a chain lies between the two branch points (or 
extremes). It has previously been discussed by Zhao and Lookman (1990) and by 
Duplantier (1986). By using 2k (2s k <  d - 1) walks from BL and concatenating them 
with Lis, we can construct a uniform k-watermelon, &(e,, e$,, . . . , -ej,) in which each 
chain has a length of 2 ( n + d  + 4 ) + 4  steps. The two extremes x(S) and x ( E )  are on 
the x,-axis with x(S) = O  and x ( E ) =  (O,O,. . . ,2xd(n)+4, .  . . ,O), The incident edges 

\Xd( kt)- Xd( kJ1 2Xd(n)+4. 
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. . . . . . . . . .  
: : : : : : : :  . . . . . . . . . .  . . . . . . . . . .  , , , , , , , , , , ............... ~ . . . . . . . . . .  , . . , . , , , , , 

0 1 2 3 4 5 6 7 B 9 10 11 12 13 1; 15 16 17 18 19 20 21 22 

X d  

Figure 5. Example of the constructed walks and 4~). 
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I 

Figure 6. Example of a 4-watermelon &(ed, e,, e,.,, -ed.,) with its two extremes on the 
x, axis. Under the map&.,,,,, i t  becomes L',(ed,,,e,,rd. -e,,) with its two extremes on 
the x,.,-axis. 
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at x(S) and x ( E )  are LO, 4, LO, e,,],  . . .,CO, -e,] and [ x ( E ) ,  x ( E ) - e , l ,  [ x ( E ) ,  x ( E ) +  
e,,], . . . , [ x ( E ) ,  x ( E ) - e , , ]  respectively (figure 6 ) .  For any two vertices x ( k , ) ,  x ( k 2 )  of 
t, we have 

I~ , (k i ) -x , (k2)1  C 2 ( x d ( n ) +  1 )  f o r j Z i  (2.4) 

l x , ( k , )  -x,(k2)1 2x,(n) +4. (2.5) 
The special case k = 2 is a polygon. For convenience, we refer to it as a watermelon 
with two uniform (2(n+d+4)+4)-s tep branches. 

In addition to these two components, another component, a ( 2 ( n + d  +4)+4)-step 
polygon, is also needed, which can be obtained as follows. We take two walks from 

and concatenate both of them with L, (or one by L, and another by Lz) .  We denote 
these two walks by U,, U, and define 

The two new walks U: and U; intersect at the points 0 and 
(x , ,  . . . , -x ;~ , .  . . , - x , ~ , .  . . , x i ,  x,) and are confined in the subsection 

x, 30, , . , , xi, s 0,. . . ,Xi& s 0,. . . , x, 3 0. (2 .8 )  

We delete the last edge from u; and join the two walks by a five-step walk: { x ; ( n  - l) ,  
x ; ( n  - l ) + e d - ,  , x ; ( n  - I)+e,,-,+ e,,, x : ( n  - l ) + e d - , + 2 e d ,  x; (n  - 1)+2e,,, x : ( n ) } ,  
which gives a 2(n+d+4)-s tep polygon C ( i e ; ,  +q) with incident edges at 0 of [0, e.] 
(or [0,  - e , ] )  and [0, e,] (or [0, - e j ] )  and e . .  e, = 0 (figure 7). For any two vertices x ( k , )  
and x ( k 2 )  of C, one can verify that 

S: 

Ixj( k , )  -x i (  k2)1 C x,, ( n )  + 1 i = 1 ,  . . . , d. (2.9) 
We denote the sets of all such walks, watermelons and polygons by W', Y' and 

9' respectively, where all the members are constructed from 3;. 

i 

0 1 2  3 4 5 6 1 8  9 1 0 1 1 1 2  
x, 

Figure 7. Example showing the joining ofthe two walks a;, W ;  in (2.9) and (2.10) (heavy 
full line) by a five-step walk (heavy broken line) to form a polygon L. The CTOES indicates 
the edge deleted from w i .  
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By using members from 9', Y and w', we construct appropriate precursors which 
are uniform polymer networks with one or no cycles and with the set of vertices 
In;, n; , .  . . , nid) ,  where ni is minimized such that 

n; = n, (2.10) 

,.(. st< . ,j n fcr i L 3. $.!I) 

and 

There are three such precursors (Gaunt et a/ 1984): 
(i) For n ,  = 0, the precursor is a polygon. We take it as any member of 9'. 
(ii) For n ,  = 1, the precursor satisfies 

n; = n, (2.12) 

and 
n;=O for k > 3  (2.13) 

which indicates that the precursor has one cycle. We take a walk w from W' and a 
polygon /1 from P' and join them together at the end vertex of U.  

(iii) For n , > 2 ,  the precursor is a uniform tree with the set of vertices 
I n ; ,  n;. . . . , n;d}  satisfying 

Id 

1 ( i - Z ) ( n ;  - nl)  = 2c. (2.14) 

To construct such a precursor, we take two walks w l ( e , )  and w2(ed--l)  from w' and 
connect them by translating ->(ed-,) such that its first vertex x(S) coincides with 
the last vertex x ( E )  of w ! ( e ! ) .  Then from 2'; we take a (k-Z)-waterme!on 
l , , , (e , - , ,  - e , ,  e2, -e2,. . .) (if k = 3 ,  we replace the watermelon by a walk w(ed) from 
W', and use the map f d - , , d  to let its two end vertices be on the x,_,-axis). We body 
shift it in the -e,-,-direction to let the extreme x ( E )  coincide with the joint of the 
two walks. We remove the extreme x(S) and the incident edges, and then add to each 
branch of fk-2 an edge in the -ed- ,  direction, which gives a uniform tree with n ,  = k 
and n , = 1  ( k s 2 d ) .  Next, we take w3(el) from W' and l;,_,( e,_! , -  e,,e, . -  eZ? ...) 
and connect them with cu2(ed_,) at its last vertex x ( E )  in the same way. The definitions 
of the walks and watermelons together with (2.2)-(2.5) ensure that the walks and 
watermelons are independent of each other. By repeating the procedure, we obtain a 
uniform tree with the set {ni  , . . . , nhd). We.note that the uniform tree constructed in 
this way is a uniform brush with the 'backbone' consisting of w,(e,) ,  w2(ed-,), 
w , ( e l ) , .  . .  (figure 8). (A brush is a particular tree topology with a self-avoiding 

; = I  

Lb.21ed.,7e,,e27e2, ... I 

Figure 8. The construction of a uniform tree (uniform brush) as a precursor from walks 
and watermelons from the sets w' and 2' respectively. 
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‘backbone’ formed by branch points of degree 2 3  that are connected by n-step SAW$. 

The topology with all branch points of degree 3 is known as a comb.) 
We now convert the precursors into a uniform network with the set ( c ,  n,, . . . , n2,, j 

by using the following two constructions. We concentrate on the third case, where the 
precursor is a uniform tree, denoted by 8’. In g’, the vertex x(S) of w l ( e l )  is the end 
vertex of a chain and satisfies the condition that for any vertex x of 8’. x,, ax,,(S). We 
denote such a vertex by x b .  We start with x, of g’, which has the incident edge 
[xb ,  xb + e , ] ,  and all the translations that may be needed will be in the -ed direction, 

Construction 1. Adding the vertices of odd degrees to g‘. Equation (2.14) implies 

Dongming Zhao and T Lookman 

d - l  
1 (n2i+,-n:,+I)=O (mod 2). (2.15) 

There remains an even number of such vertices. Starting with the highest degree, we 
list all of these vertices and write them in pairs. In one such pair, let the first vertex 
have degree i and the second vertex have degree j ,  so i j and i - j  = 2k We take a 
( j -  1)-watermelon &-,(e,,, e,,, . . . , -ek!+,) from Z’, which has its two extremes on the 
xd-axis. We translate it to let its extreme x ( E )  coincide with x, of g’, which converts 
xb into a vertex of degree j .  At the extreme x(S) of the watermelon, we first join it 
with the last vertex x ( E )  of a walk &(ed) from v’ by translating w ( e d ) .  We then take 
k polygons from P‘ such that at 0, the incident edges of the polygons are not the 
edges [0, -ed] ,  [0, e,,], . . . , [0, -ek,.,], and by a translation, the polygons are confined 
in k of the remaining 2 ( d - 2 ) -  1 subsections which satisfy x,, s x , , ( S )  at x(S) of the 
watermelon. By joining the polygons in this way, we convert the extreme x(S) into a 
vertex of degree i. Thus, we add the precursor with a vertex of degree i and a vertex 
of degree j ,  which produces l + ( i + j - 6 ) / 2  cycles. We repeat the procedure for all 
pairs and obtain a uniform polymer network 9’‘ with n2ii, of vertices with degree 2 i +  1. 
The vertex x(S) of the last walk added becomes xb of g” with incident edge [x,. xb + e,,]. 

Construction 2. Adding a vertex of degree 2k (forming k - 1 cycles) to 9”. We first 
join x, of 8’’ by a walk w,(ed-,)  from W ’  to convert it into a vertex of degree 2 with 
incident edges [x , , ,xb+e, , - , ]  and [ x h , x b + e d ] .  We then take k-1 polygons from 9’, 
which, at 0, have incident edges other than [0, ed- , ]  and [0, e, ,] ,  and can be translated 
to be confined in the other 2 d - 2  subsections at x,,. By joining the k - 1 polygons at the 
joint vertex xb, we have thus added a vertex of degree 2k and k -  1 cycles to 8”. The 
new x, is the vertex x(S) of u,(e , , - , )  with incident edge [xb ,xb+e , ,_ , ] .  Next, we take 
a walk u2(e,,) from W’ and k‘ -1  polygons and add them to x, to convert it into a 
vertex of degree 2k’, which yields k’-1 cycles. The procedure is repeated until all 
vertices of even degree have been added. 

From this procedure, we obtain a uniform polymer network g 2 , n + d + 6 , ( ~ ,  n, ,  . . . , n 2 d )  

with each chain constructed from two members of $8; and of length 2 ( n + d + 6 ) x  
(=2(n + d  +4)+4) edges, Similarly, based on the above constructions, we can convert 
the first two precursors into a polymer network. 

Generally, we take a group of 2 K  walks U , ,  . . . , u)2x from 93; where wi has mi 
edges in the surface xI = 0. We first concatenate K ,  of the walks with L,  and the rest 
of K, walks with L , ,  where K ,  + K, = 2K, and then use these walks to construct the 
required walks, watermelons and polygons. By following the above procedure to join 
these components together, we obtain a polymer network gz,.+,,+a,(c, n 3 , .  . . , n 2 d )  

i=, 
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which has either m + K , ( d + 4 )  or m + K 2 ( d + l ) + 4 K  edges in the surface, depending 
on the position of the end vertex x ( n )  of the walks, where m = m , + . .  . + m Z K .  The 
construction of g 2 ( n + d + 6 , ( ~ ,  n 3 , .  . . , n2 , )  from the walks U,, . . . , is considered as 
a standard procedure which has to he followed whenever a group of 2 K  walks from 
93; are used to construct a polymer network. Hence, a distinct group of 2 K  walks will 
give a distinct polymernetworkg2(.+d+6)(c, n, ,  . . . , n 2 d ) .  We denote by b:,,,, the number 
of walks in the ith subclass with m edges in the surface. We obtain 

2 K  n b L ,  g Z K ( n + d + 6 ) , m + K ~ ( d + 4 ) + g 2 K ( n r d + b ) , m + K 1 ( d + 4 ) + 4 K  (2.16) 
j = l  

with m = m , + m 2 + . . . + m , K .  We write 

as the generating function for walks in the ith subclass. From (2.16) we have 
2 K  

(B. (w,  i ) ) 2 K  =(  bh ,emw)  
m = 0  

2K" 2 K  

m=o m,+ ...+ m2x=m , = I  
= E  1 Il bk,e""  

I2""(2Kn) '" f (w)Gz , ,+d+~) (~ ,  n ; .  . . . , % d ,  U ) .  (2.19) 

We now derive an upper bound for G,( c, n , ,  . . . , % d .  w ) .  From (1.2), we can replace 
the set (c, n, ,..., n l d )  by the set ( n , ,  n 3 , .  _ _ ,  n z d ) ,  the number of all terminal and 
branch points of 9.. We first classify the 9.s according to how all the terminal and 
branch points are connected by,chains. Let n'=  n ,  + n, +.  . .+ nZd,  from Gaunt et a1 
(1984), there can be, at most, 2(;) ways of connecting all the points. Hence, there can 
be, at most, 2";' such classes. In each class, we divide the g,s again by the number of 
chains which have at least one vertex in the surface. These two classifications give, at 
most, 2';" . 2 K  subclasses. We denote by G.( c, n , ,  . . . , hd, w, i) the generating function 
for 9. in the ith subclass. By following the line of argument given in Zhao and Lookman 
(1990), we obtain w and as n +a, 

G,(c, n 3 ,  _ .  ., n , , , o , i ) ~ e x p [ 2 K n A ( w ) + O ( n ) ] .  (2.20) 
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(2.21) 6 2'';'(2K) exp[ZKnA(w j+O(n j ]  

which, together with (2.1) and (2.19), establishes (1.4). 
In the above construction, we note that all of the joint vertices are in the surface 

with coordinates iO,O, .  . . , x ~ J ,  since the surface is penetrable and the monomers of 
a polymer network can be on either side of the surface. When the interaction surface 
x, = 0 is impenetrable, a polymer network is totally confined to one side of the surface, 
say x,SO. In  this case, we consider the set 93:, which is the subset of 8. satisfying 

(2.22) x,( i )  3 0 for i=0 ,1 ,  . . . ,  n. 

The map g, is also restricted to i P 2 .  We replace L, and L, by three new uniform 
finite-step walks LI , L; and L; which are confined to x, 2 0 and are defined such that 
they are disjointed except at  the vertices A = (3,0,. . . ,0) and x(0), with the first step 
of Lj being the edge [A, A - e,], the first step of L: being the edge [A, A + ed]  and the 
first step of ti being the edge [A, A f e , ]  (figure 9). We concatenate the walks in 8: 
with L ; ,  L; and L;, and follow the same procedures for constructing the walks, 
watermelons and polygons. This will yield new walks, watermelons and polygons such 
that all of these new components have their x(S)s and x ( E ) s  in the surface x, = 3. By 
using these new components and following the same procedure as that forthe penetrable 
surface, but replacing A(w) with A + ( w )  where necessary, we obtain that the reduced 
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free energy for polymer networks interacting with an impenetrable surface is the same 
as that for  SAW^. 

3. Summary 

We have considered the problem of the interaction between a surface and polymer 
networks with a specific topology defined by the values {c,  n 3 ,  n 4 , .  . . , n Z d ) .  The values 
{c, n , ,  n 4 , .  . . , n2.,) do not define a unique topology. We have established that such 
networks have the same reduced free energy (and hence critical point and crossover 
behaviour) as that for  SAW^ interacting with a surface. For c # 0,  the definitions (1.1) 
and (1.2) allow a chain to have the same initial and terminal vertex, resulting in a loop 
or polygon that can only have an even number of monomers in a hypercubic lattice. 
Hence, for a uniform topology with c # 0 ,  each chain is restricted to having an even 
number of monomers. For c=O,  each chain can have an even or odd number of 
monomers. We note that the trees obtained as precursors also give uniform brushes 
(combs), implying that our result also holds for brushes (combs). 
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